A Light Scattering based approach for quantification of tissue multifractality: Prospects in
pre-cancer detection

1. Introduction

Over the last fifty years, there have been tremendous advances in our understanding of the molecular and cellular
processes of cancer; however, it still remains to be the deadliest disease of our time. Despite the significant progress
made in treatment of a number of neoplastic disorders, early detection of neoplastic changes appears to be our best
method to improve patient quality of life and reduce cancer mortality. The conventional methods for early detection
and diagnosis of cancer rely on histological and cytological examination of tissue. There is a tremendous need in
developing better methodologies for extraction and quantification of the morphological alterations associated with
cancer/pre-cancer development. In this regard, the optical spectroscopic and imaging approaches have shown early
promise in quantifying both the morphological (using elastic scattering spectroscopy) and biochemical (using
inelastic scattering spectroscopy such as fluorescence and Raman) alterations associated with cancer development.
Notably, polarized elastic scattering spectroscopy has been explored to quantify the self-similar (fractal) nature of
micro-scale fluctuation of local refractive index in tissues ™. These studies have revealed that changes in tissue self-
affinity can serve as a potential bio-marker for pre-cancer. Since most of the cancers arise in epithelial tissues,
majority of the previous attempts on developing methods (optical or non-optical) for early diagnosis of cancer relied
largely on quantifying the alterations in the superficial epithelial layer. However, recently it has been recognized that
in addition to the alterations in the superficial epithelial cells, neoplasia is also associated with characteristic changes
in the underlying connective tissue layer (stroma). Progression of cancer involves complex interactions between
neoplastic cells and the stroma. Also, carcinogenesis results, in part, from defective epithelial - stromal
communication. In fact, alterations in stromal biology may precede and stimulate neoplastic progression in pre-
invasive disease. Interestingly, the collagen fiber network present in stroma also exhibits fractal architecture in the
organization of the fibers and micro-fibrils . Quantification of the changes in the fractal characteristics of the
stroma may thus provide additional targets to aid in screening and early detection of precancerous changes. With
this motivation, we have explored the use of multifractal detrended fluctuation analysis model to extract and
quantify the fractal properties of the refractive-index structure (inhomogeneities) in the stromal layer of dysplastic
(pre-cancerous) human cervical tissues. The results showed interesting variations in the micro-optical tissue fractal
properties in the various states of dysplasia.

2. Theoretical background

e Fractals and multifractals

A fractal series is one whose variance o (x) = (|f (x + a) — f(x)|?), scales according to o (sx) « st (x), where H
is the Hurst exponent and s denotes the scale, i.e., number of points. The Hurst exponent gives a measure of
correlation or anti-correlation behavior between two neighboring points of a fractal series. Values of Hurst exponent
=0.5, >0.5 and < 0.5 correspond to uncorrelated random (Brownian) fluctuations, long range correlations or
persistent behavior and anti-correlations or anti-persistent behavior respectively. A fractal object is typically
characterized by fractional Fractal dimension (Df) which is related to Hurst exponent by a simple equation: Dy =
Dy —H+ 1 where Dgis Euclidean dimension. Note that a monofractal series can be generated by computing
Fractional Brownian Motion (FBM), i.e., Brownianisation of a white Gaussian noise is a monofractal (this has been
used in our control experiments, as described subsequently).

Many of the naturally found objects (and processes as well) exhibit multi-scale self-affinity or multifractality.
A multifractal system is a generalization of a monofractal system in which a single exponent (Hurst exponent) is not
enough to describe its dynamics; instead, a continuous spectrum of exponents (singularity spectrum) is needed. An
exponent h(q), function of the order of moment g, is the measure of correlation between consecutive points of a
multifractal series. In this case it is termed as Generalized Hurst exponent (h(qg)). For a stationary series, h(g=2) is
identical with Hurst exponent H. Multifractal series can be generated using a binomial multifractal model that
computes a series: x;, = a®*~V(1 — g)"max~n(k-1 of N = 2"max numbers withk = 1, ...,N; where Generalized
Hurst exponent is related to the parameter a as exponent h(q) = % - mw:’l+a)q}

Previously, most of the techniques to detect early cancer relied on quantifying the alterations in superficial epithelial
layers of tissues. In present paper, we are going to characterize the changes in fractal properties in connective tissue
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layers, i.e., stromal region. This is motivated by the recent findings which state that, in addition to the alterations in
the superficial epithelial cells, neoplasia is also associated with characteristic changes in the underlying connective
tissue layer (stroma). Progression of cancer involves complex interactions between neoplastic cells and the stroma.
Also, carcinogenesis, partially, is caused by defective epithelial-stromal communication. In fact, alterations in
stromal biology may precede and stimulate neoplastic progression in pre-invasive disease. Interestingly, the collagen
fiber networks in stroma also exhibit fractal architecture. Quantification of the changes in the fractal characteristics
of the stroma may thus provide additional targets to aid in screening and early detection of precancerous changes.
Also, previous efforts have been made to characterize tissue-fractality using light scattering model within
monofractal approximation. However, as observed by us, the spatial variation of tissue refractive index exhibits
multifractality. In order to characterize the tissue-multifractality we thus used a state-of-the-art multifractal analysis
method, namely Multifractal Detrended Fluctuation Analysis (MFDFA).

e Light scattering based model in monofractal approximation

According to fractal-Born approximation, light scattering signal can be given by the Fourier transform of tissue
refractive index (r.i.) spatial correlation function;

I(B) x k*[ C(r)efrd3r 1)

Where B is the spatial frequency = 2ksin§ , 0 being the scattering angle, wave vector k = 27" and C(r) is the r.i.
correlation function.

In order to describe light scattering from self-similar (fractal) biological scatterers, various types of refractive index
spatial correlation functions C(r) have been proposed. Among these, the von Karman self-affine function ™, which
is a generalized correlation function for statistically random fractal fields, has been found to be suitable. The von
Karman correlation function is given by
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where | = fractal upper limit and modified Bessel function of 2" kind of the order of H. The Fourier transformation
of the von Karman correlation function thus yields the analytical expression of light scattering signal as

1
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For B8 » % above relation can be shown to exhibit exact inverse power law behavior F(B) « (I8)~2% with the

scaling exponent «, Euclidean dimension Dg and Hurst exponent H are related as « = H + Dg /2. Such dependence
can be realized by noting that the power spectrum of any fluctuation series is basically the Fourier transform of the
autocorrelation function. Thus the Hurst exponent should easily be calculated from the slope of the log-log plot of
power spectrum.

In practice, as shown below (Figure 1), the log-log plot of power spectrum of a monofractal (FBM, input Hurst
exponent known-a-priori = 0.6) series exhibits linear slope throughout the entire range of frequency (Figure 1a), H-
value obtained from the slope matches the input H-value of the series. But power spectrum of a multifractal
(binomial multifractal, input parameter a known-a-priori = 0.8) is not at all linear throughout the entire range
(Figure 1b); different slopes at different frequency range yield different Hurst exponent values.

This illustrates the inadequacy of Fourier power spectrum based approaches for quantifying multifractality of any
non-stationary multi-scaling fluctuation series. Since r.i. fluctuation in tissue shows multifractality (as demonstrated
subsequently), the monofractal model (based on Fourier domain analysis) may not be accurate enough to
characterize self-similarity for such complex multifractal scattering objects. We have thus used the following
strategy for the analysis of light scattering spectrum from multifractal.
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Figure 1. Log-log plot of theoretical power spectrum of (a) monofractal series (FBM) shows linearity throughout the entire
range of frequency, Hurst exponent value (H = 0.57) calculated from corresponding slope agrees reasonably well with the
input H-value (=0.6), whereas that of (b) a multifractal series (binomial model) exhibits different slopes in different
frequency-range

e Light scattering based inverse analysis strategy for multifractal

The multifractal properties in spatial tissue refractive index fluctuations can be analyzed via light scattering signal
using the following two approaches.

1) Light scattering signal modeled by appropriate multifractal index correlation function;
2) An inverse approach to extract representative refractive index fluctuations from light scattering signal.

To model an actual multifractal correlation function is not straightforward. In our present study, we have thus
adopted the second approach. The representative fluctuation of refractive index An(r,r") can be extracted from the
scattering signature using the following approach.

Starting from equation (1), the scattering signal can be expressed as,
1(B) « k*[ |An(r, r’)ei(‘“')d3r|2 (4)

Thus the refractive index fluctuation series can be extracted from the scattering spectra by inverse Fourier transform

as
J /I(B) e i(Br)a3g

Since f = 2.27”. sin g, the light scattering signal can be recorded either by detecting angular variation of scattering

or the wavelength variation of scattering. The resulting representative fluctuation extracted from the light scattering
signal (from Eg. 5) can then be subjected to MFDFA, to characterize its multifractality.

An(r,r") o« k2
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e Multifractal Detrended Fluctuation Analysis (MFDFA)

MFDFA is a widely used technique to quantify the multifractal parameters namely Generalized Hurst exponent h(q)
and width of singularity spectra Aa. The steps of this method are discussed in details elsewhere B!. MFDFA,
basically, destroys the trend of the given series by subtracting the local polynomial fits and then find the variance
(order of moment g=2) of the detrended series. From this variance it calculates the g-th order fluctuation function
Fq(s) and plots it with the length of the data point s. This variance would exhibit a power law with the length scale if
the series is a fractal. This power-law coefficient is termed as Hurst exponent h(qg). If this h(q) is the same for all
values of order of moment g, then it is a monofractal series. For a monofractal series, h(q)=H. On contrary, if h(q)
changes its values for different q’s, it confirms that the data-series is multifractal. For a stationary multifractal series,
h(g=2) = H. Generalized Hurst exponent is related to classical scaling exponent t(q) via relation t(q) = qh(q) — 1.
Another way to characterize multi-fractal series is by singularity spectrum f(a), where, a is singularity strength or
Holder exponent and width of singularity spectrum Ao provides a measure of strength of multi-fractality. It is related

4@ and f(a) = qa — t(q) (Steps for MFDFA are illustrated in case of

to t(q) via a Legendre transform, i.e., & = wre

tissue- index fluctuation in Figure 3).

3. Multifractality of tissue

Present point of concern is characterization of tissues. Several studies on this already have revealed that tissues
exhibit self-similar behavior or fractality and several efforts were made to establish models to characterize tissue-
fractality based on different correlation functions. But all those previous understandings were within monofractal
limits whereas it can be proved that tissues basically exhibit multifractality, that is, multi-scale self-similarity and
monofractal approximations fail in case of tissue-characterization. The detailed strategy to prove tissue-
multifractality can be found in our recently published paper . Tissue-samples used in our experiments are
histopathologically characterized biopsy tissue samples of human cervix having different grades of dysplasia
(Grade-I, 1l and I11), provided by G.S.V.M. Medical College and Hospital, Kanpur.

e Analysis of tissue within monofractal approximation: Fourier domain analysis

The methodology has been described in Section 2 with synthetic fractal images. Likewise, for this analysis, we
record Differential Interference Contrast images of tissues and unfold the images in 1-D to obtain the refractive
index fluctuation series and plot its Fourier spectrum. Being a statistically self-similar series, it should exhibit a
power law (F(B) « (B)~%%, B being the spatial frequency here in um™) at the limit of large. In Figure 2, we show
the results of the Fourier analysis on the spatial variation of refractive index from the connective tissue regions of
typical dysplastic cervix. The DIC image and the corresponding Fourier power spectra of the generated one
dimensional spatial index fluctuations are shown in two consecutive figures. The wide range of sizes and shapes of
the inhomogeneities, their high packing densities and other factors all contribute to the complex nature of the
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Fig.2 .DIC image of typical grade Il dysplastic connective tissues and the corresponding Fourier power spectra of the

generated one dimensional spatial index fluctuations are shown. The two different selected frequency ranges (lower and
higher) exhibiting different power law scaling are shown by red and green colors respectively. The corresponding fits at
lower Brange (blue line), at higher 8 range (red line) and the overall fit (black line) are shown. The values for the power law
coefficients (slope -2a) and the corresponding estimate for the average Hurst exponents H (for overall fitting) are noted.
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resulting index variations. The power spectra are also associated with large background fluctuations indicating the
overall randomness of the underlying index variations. The power spectra exhibit power law scaling beyond a
certain spatial frequency range (for g > 0.075 um™, the spectral density appears linear on a log—log plot), which
points towards the fractal nature of tissue-index fluctuation. But, unlike the case for a simple monofractal, the slopes
are not the same throughout the entire spatial frequency range. The power law coefficients in different frequency
ranges are different, -0.18 and -2.75; either of which are again different from the slope for the entire frequency range
(= -1.40). Thus the Fourier domain analysis, i.e., the analysis within monofractal limit is not adequate to
parameterize the fractality of tissue properly. It clearly indicates the multifractality of tissue, which can be
confirmed from the multifractal analysis on this.

e Analysis of tissue with multifractal analysis tool: MFDFA

Failure of monofractal analysis procedure necessitates the application of multifractal analysis procedure. Thus we
employ the sophisticated analysis tool MFDFA, which we discussed beforehand, on the one dimensional index
fluctuation series. In Figure 3, the steps of MFDFA on unfolded refractive index fluctuation series extracted from
the DIC image of a typical Grade-I dysplastic tissue are shown.

(@)
= = polynomial fluctuatio
an 4pu[‘,‘num|a|‘ﬁt= ......... ..............
alke R - T '
- o
0 'll:': ......... 1: ....... N .
- 17 11 ' : ] 5 ;
B0 hd - # | ----- ¥ : | —-'é ................ S|D|JE:h(I|] .........
I dh 400 B0 BOD S 35 loglscale) s
()
c] .
-E.-_"‘ = Generalized Hurst exponent * singularity spectum
Dg_, ............... T ] quadmﬁcﬁt
..................... WSS=DET
20 6 qo 10 20 17 au.'a 09

Figure 3: With the 1-D fluctuation series obtained from a typical DIC image of a grade-1 dysplastic tissue. The detrending
procedure is shown in (a). Blue dotted line is the original data and the black lines are the fitted data. Detrended series is obtained
by subtracting the fitted data from the original one. The g-th order fluctuation function Fq is plotted against length of data points
in log-log scale (b), exhibiting different slopes for different orders of moment. Plots for Generalized Hurst exponent and Width of
Singularity are shown in (c) and (d).

It is shown clearly that the slope, i.e., the Hurst exponent h(q) values are changing significantly with order of
moment q. It is a clear confirmation of multifractality in index fluctuation. Also the sigmoid nature of the
Generalized Hurst exponent curve and the width of multifractality are in excellent agreement with this observation.
Thus it is proved that tissues are multifractals and no monofractal-assumption based analysis procedure can be able
to characterize it. It obviates the need of the alternative analysis strategy, i.e., the inverse analysis strategy that we
already have discussed in Section 2. Also, it is seen that variation in slope is larger for negative q values than that for



positive g-values. Again, negative q amplifies small-scale fluctuations more. Thus the variation in result for different
grades of dysplasia is expected mainly from the small-scale fluctuation regime.

4. Experimental strateqy: Light scattering based approach for quantification of tissue-multifractality

Our ultimate goal is to look for a non-invasive methodology for quantitative detection of early cancer. Thus
preparing tissue slides and taking microscopic images cannot be preferred. Consequently we cannot move with DIC
imaging. In this case, light scattering spectroscopic measurement can serve our purpose. In order to establish the
light scattering based experimental strategy, we first validate our strategy through control experiments with synthetic
mono-fractals and multifractals and then come to experiment with actual tissue. As described earlier, the scattering
intensity can be measured from both wavelength and angular variation. Here, in the control experiment, the
scattering intensity is recorded as the angular variation of scattering and in case of tissues, it is recorded as the
wavelength variation of scattering.

e Validation through control experiment

Schematic diagram in Figure 4 presents the set-up for measurement of angular variation of scattering. The Twisted
Nematic Spatial Light Modulator (TNSLM, LC — R 2500; Holoeye Photonics, Germany, number of pixel 800 X
600, pixel size 32 um) is serving as the scattering object here. Processed fractal phase map (2-D images of
monofractal FBM and Binary multifractal series, having different Hurst exponent values which are user controlled
and known-a-priori) are relayed through the SLM, working in forward geometry. The angular distribution of the
scattered light is obtained from the detected light intensity at individual pixels of EMCCD (Andor iXon3-885,
number of pixels = 1004 x 1002, pixel area= 8 x 8 um?) along the horizontal direction (illustrated separately).

Set-up for angular variation of scattering (control experiment)
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Figure 4: A schematic of the experimental set-up for the measurement of angular variation of light scattering
e Experiment with actual tissue:

Similar procedure as above is applied on actual with actual tissues (slides prepared with unstrained tissue sections of
thickness ~ 5um, lateral dimension ~ 4 mm x 6 mm). The scattering intensity is recorded by the Fiber-optic
spectrometer as the function of wavelength variation (400-700nm), as shown in the schematic Figure 5. We are
specifically interested in backward scattering region since the small-scale fluctuations dominate in the backward
scattering and also due to the ease of practical setup with patient.



Set-up for wavelength variation of scattering (light scattering
measurements from tissue)
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Figure 5: A schematic of the experimental set-up for the measurement of wavelength variation of light scattering

5. Results and Discussions

In control experiments with multifractal series, the Generalized Hurst exponent of the series extracted by inverse
analysis from theoretical power spectrum and experimental light scattering signal for a multifractal series of input
parameter a = 0.8 are shown in the figure 6 which exhibits the agreement in the value of Hurst exponent estimated
from both (only one result is shown here though we have dealt with different images of series having 0.5<a<1).
Slight discrepancy observed may be due to limited size of the fractal series used since MFDFA gives accurate
results for statistically large series only. However, in our case, the series was restricted by the pixel dimensions of
the SLM (800x600). Never-the-less, good agreement is observed between the multifractality quantified via the
inverse analysis of light scattering signal and the corresponding theoretical analysis of the input multifractal. This
therefore validates our light scattering inverse analysis strategy for quantification of multifractality.

We also have done the same analysis with synthetic monofractal FBM images with input Hurst exponent known-a-
priori (0.1<H<1.0). Those have been analyzed with the Fourier domain analysis method, using von-Karman
correlation function based monofractal assumption. The results e shown in Tablel (results shown only for lower H-
values, for H>0.6 the FBM series generated by inbuilt MATLAB program is not a proper monofractal, some
multifractality can also be found, so results could come inappropriate).

Table 1: Results of the control experiment with monofractal (FBM) showing the similarity in values of Hurst exponent
calculated from the log-log plot analysis of theoretical power spectrum and experimental light scattering data

Input Slope of theoretical H from Slope of experimental H from
Hurst power spectrum log-log theoretical power light scattering data, experimental light
exponent plot=-(2H+1) spectrum log-log plot=-(2H+2) scattering data

0.1 -1.12 0.06 -2.18 0.09

0.2 -1.25 0.12 -2.28 0.14

0.3 -1.40 0.20 -2.48 0.24

0.4 -2.02 0.51 -2.87 0.44

0.5 -1.96 0.48 -2.95 0.48

0.6 -2.13 0.56 -3.14 0.57
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Figure 6: 2-D image of binomial multifractal is processed (a). Its theoretical power spectrum (b)is analyzed and
experimental scattering signal (c) is recorded. The fluctuation series is obtained by inverse analysis. MFDFA on those
series give the Generalized Hurst exponent plot, h(q=2) =H (d).

Thus, for both monofractal and multifractal, theoretical and experimental values of fractal-parameter are in proper
agreement which, in turn, validates our experimental strategy.

Now we apply this strategy on actual tissues. The results obtained from the Inverse analysis of light scattering
spectra from tissues show a clear deviation in Hurst exponent and increase in width of multifractality for higher
grades of pre-cancer. Table-2 gives the comparative study on 29 tissue-samples having different grades of pre-
cancer.

Table 2. Summary of the MFDFA analysis on the spatial refractive index fluctuations in DIC images connective
tissue regions of the human cervix specimens with different grades of precancers (dysplasia).

Tissue region Generalized Hurst exponent h (q =2) Width of singularity spectra Aa
Grade | Grade Il Grade Il Grade | Grade Il Grade 11l
Connective tissue 0.54+0.03 0.50+0.04 0.36+0.08 0.60+0.10 0.68+0.13 0.88+0.07

Clear trend is apparent for higher grades of pre-cancer. Decrease in Hurst exponent for higher grades of precancer
indicates the anti-persistent behavior of index fluctuations within the tissue which may originate due to the fact the
fibrous network present in connective tissue region gets disturbed in diseased condition, fibers tend to get shortened
and correlation breaks. Increase in width of singularity spectrum also indicates the increasing roughness due to
increase in disease in sub-cellular level.



The initial application of our experimental strategy underscores its promises to be employed as a non-invasive tool
for detection as well as quantification of pre-cancer. We are able to prove our technique accurate through control
experiments and to explain the results we observed from application of the strategy on tissues reasonably. The
successful application of the methodology, thus, states its relevance and significance in terms of quantitative
measurement of pre-cancer.
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