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A Light Scattering based approach for quantification of tissue multifractality: Prospects in 

pre-cancer detection 
 

1. Introduction 

 

Over the last fifty years, there have been tremendous advances in our understanding of the molecular and cellular 

processes of cancer; however, it still remains to be the deadliest disease of our time. Despite the significant progress 

made in treatment of a number of neoplastic disorders, early detection of neoplastic changes appears to be our best 

method to improve patient quality of life and reduce cancer mortality. The conventional methods for early detection 

and diagnosis of cancer rely on histological and cytological examination of tissue. There is a tremendous need in 

developing better methodologies for extraction and quantification of the morphological alterations associated with 

cancer/pre-cancer development. In this regard, the optical spectroscopic and imaging approaches have shown early 

promise in quantifying both the morphological (using elastic scattering spectroscopy) and biochemical (using 

inelastic scattering spectroscopy such as fluorescence and Raman) alterations associated with cancer development. 

Notably, polarized elastic scattering spectroscopy has been explored to quantify the self-similar (fractal) nature of 

micro-scale fluctuation of local refractive index in tissues 
[1]

. These studies have revealed that changes in tissue self-

affinity can serve as a potential bio-marker for pre-cancer. Since most of the cancers arise in epithelial tissues, 

majority of the previous attempts on developing methods (optical or non-optical) for early diagnosis of cancer relied 

largely on quantifying the alterations in the superficial epithelial layer. However, recently it has been recognized that 

in addition to the alterations in the superficial epithelial cells, neoplasia is also associated with characteristic changes 

in the underlying connective tissue layer (stroma). Progression of cancer involves complex interactions between 

neoplastic cells and the stroma. Also, carcinogenesis results, in part, from defective epithelial - stromal 

communication. In fact, alterations in stromal biology may precede and stimulate neoplastic progression in pre-

invasive disease. Interestingly, the collagen fiber network present in stroma also exhibits fractal architecture in the 

organization of the fibers and micro-fibrils 
[2]

. Quantification of the changes in the fractal characteristics of the 

stroma may thus provide additional targets to aid in screening and early detection of precancerous changes. With 

this motivation, we have explored the use of multifractal detrended fluctuation analysis model to extract and 

quantify the fractal properties of the refractive-index structure (inhomogeneities) in the stromal layer of dysplastic 

(pre-cancerous) human cervical tissues. The results showed interesting variations in the micro-optical tissue fractal 

properties in the various states of dysplasia.  

 

2. Theoretical background 

 

 Fractals and multifractals 

A fractal series is one whose variance  ( )  〈| (   )   ( )| 〉, scales according to  (  )     ( ), where H 

is the Hurst exponent and s denotes the scale, i.e., number of points. The Hurst exponent gives a measure of 

correlation or anti-correlation behavior between two neighboring points of a fractal series. Values of Hurst exponent 

=0.5, >0.5 and < 0.5 correspond to uncorrelated random (Brownian) fluctuations, long range correlations or 

persistent behavior and anti-correlations or anti-persistent behavior respectively. A fractal object is typically 

characterized by fractional Fractal dimension (  ) which is related to Hurst exponent by a simple equation:    

        where    is Euclidean dimension. Note that a monofractal series can be generated by computing 

Fractional Brownian Motion (FBM), i.e., Brownianisation of a white Gaussian noise is a monofractal (this has been 

used in our control experiments, as described subsequently). 

Many of the naturally found objects (and processes as well) exhibit multi-scale self-affinity or multifractality. 

A multifractal system is a generalization of a monofractal system in which a single exponent (Hurst exponent) is not 

enough to describe its dynamics; instead, a continuous spectrum of exponents (singularity spectrum) is needed. An 

exponent h(q), function of the order of moment q, is the measure of correlation between consecutive points of a 

multifractal series. In this case it is termed as Generalized Hurst exponent (h(q)). For a stationary series, h(q=2) is 

identical with Hurst exponent H. Multifractal series can be generated using a binomial multifractal model that 

computes a series      (   )(   )      (   ) of         numbers with        ; where Generalized 

Hurst exponent is related to the parameter   as exponent  ( )  
 

 
 

  *   (   ) +

      
. 

Previously, most of the techniques to detect early cancer relied on quantifying the alterations in superficial epithelial 

layers of tissues. In present paper, we are going to characterize the changes in fractal properties in connective tissue 

http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Singularity_spectrum
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layers, i.e., stromal region. This is motivated by the recent findings
 
which state that, in addition to the alterations in 

the superficial epithelial cells, neoplasia is also associated with characteristic changes in the underlying connective 

tissue layer (stroma). Progression of cancer involves complex interactions between neoplastic cells and the stroma. 

Also, carcinogenesis, partially, is caused by defective epithelial-stromal communication. In fact, alterations in 

stromal biology may precede and stimulate neoplastic progression in pre-invasive disease. Interestingly, the collagen 

fiber networks in stroma also exhibit fractal architecture. Quantification of the changes in the fractal characteristics 

of the stroma may thus provide additional targets to aid in screening and early detection of precancerous changes. 

Also, previous efforts have been made to characterize tissue-fractality using light scattering model within 

monofractal approximation. However, as observed by us, the spatial variation of tissue refractive index exhibits 

multifractality. In order to characterize the tissue-multifractality we thus used a state-of-the-art multifractal analysis 

method, namely Multifractal Detrended Fluctuation Analysis (MFDFA). 

 Light scattering based model in monofractal approximation 

According to fractal–Born approximation, light scattering signal
 
can be given by the Fourier transform of tissue 

refractive index (r.i.) spatial correlation function; 

                 ( )      ( )             (1) 

Where   is the spatial frequency       
 

 
 ,   being the scattering angle, wave vector   

  

 
 and C(r) is the r.i. 

correlation function. 

In order to describe light scattering from self-similar (fractal) biological scatterers, various types of refractive index 

spatial correlation functions C(r) have been proposed. Among these, the von Karman self-affine function 
[1]

, which 

is a generalized correlation function for statistically random fractal fields, has been found to be suitable. The von 

Karman correlation function is given by  

                      ( )  (
 

 
)
 

  (
 

 
)                  (2) 

where l = fractal upper limit and modified Bessel function of 2
nd

 kind of the order of H. The Fourier transformation 

of the von Karman correlation function thus yields the analytical expression of light scattering signal as 

                 ( )   ( )    
 

[  (  ) ]
      (3)  

For   
 

 
, above relation can be shown to exhibit exact inverse power law behavior  ( )  (  )    with the 

scaling exponent  , Euclidean dimension    and Hurst exponent H are related as        ⁄ . Such dependence 

can be realized by noting that the power spectrum of any fluctuation series is basically the Fourier transform of the 

autocorrelation function. Thus the Hurst exponent should easily be calculated from the slope of the log-log plot of 

power spectrum. 

In practice, as shown below (Figure 1), the log-log plot of power spectrum of a monofractal (FBM, input Hurst 

exponent known-a-priori = 0.6) series exhibits linear slope throughout the entire range of frequency (Figure 1a), H-

value obtained from the slope matches the input H-value of the series. But power spectrum of a multifractal 

(binomial multifractal, input parameter a known-a-priori     ) is not at all linear throughout the entire range 

(Figure 1b); different slopes at different frequency range yield different Hurst exponent values. 

This illustrates the inadequacy of Fourier power spectrum based approaches for quantifying multifractality of any 

non-stationary multi-scaling fluctuation series. Since r.i. fluctuation in tissue shows multifractality (as demonstrated 

subsequently), the monofractal model (based on Fourier domain analysis) may not be accurate enough to 

characterize self-similarity for such complex multifractal scattering objects. We have thus used the following 

strategy for the analysis of light scattering spectrum from multifractal. 
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 Light scattering based inverse analysis strategy for multifractal 

The multifractal properties in spatial tissue refractive index fluctuations can be analyzed via light scattering signal 

using the following two approaches.  

1) Light scattering signal modeled by appropriate multifractal index correlation function; 

2) An inverse approach to extract representative refractive index fluctuations from light scattering signal. 

To model an actual multifractal correlation function is not straightforward. In our present study, we have thus 

adopted the second approach. The representative fluctuation of refractive index   (    ) can be extracted from the 

scattering signature using the following approach. 

Starting from equation (1), the scattering signal can be expressed as, 

       ( )     |  (    )  (    )   |
 
    (4) 

Thus the refractive index fluctuation series can be extracted from the scattering spectra by inverse Fourier transform 

as 

    (    )     | √ ( )    (    )   |    (5) 

Since     
   

 
     

 

 
, the light scattering signal can be recorded either by detecting angular variation of scattering 

or the wavelength variation of scattering. The resulting representative fluctuation extracted from the light scattering 

signal (from Eq. 5) can then be subjected to MFDFA, to characterize its multifractality.  

 

Figure 1. Log-log plot of theoretical power spectrum of (a) monofractal series (FBM) shows linearity throughout the entire 

range of frequency, Hurst exponent value (H = 0.57) calculated from corresponding slope agrees reasonably well with the 

input H-value (=0.6), whereas that of (b) a multifractal series (binomial model)  exhibits different slopes in different 

frequency-range 
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 Multifractal Detrended Fluctuation Analysis (MFDFA) 

MFDFA is a widely used technique to quantify the multifractal parameters namely Generalized Hurst exponent h(q) 

and width of singularity spectra   . The steps of this method are discussed in details elsewhere 
[3]

. MFDFA, 

basically, destroys the trend of the given series by subtracting the local polynomial fits and then find the variance 

(order of moment q=2) of the detrended series. From this variance it calculates the q-th order fluctuation function 

Fq(s) and plots it with the length of the data point s. This variance would exhibit a power law with the length scale if 

the series is a fractal. This power-law coefficient is termed as Hurst exponent h(q). If this h(q) is the same for all 

values of order of moment q, then it is a monofractal series. For a monofractal series, h(q)=H. On contrary, if h(q) 

changes its values for different q’s, it confirms that the data-series is multifractal. For a stationary multifractal series, 

h(q=2) = H. Generalized Hurst exponent is related to classical scaling exponent  ( ) via relation  ( )    ( )   . 

Another way to characterize multi-fractal series is by singularity spectrum  ( ), where,   is singularity strength or 

Holder exponent and width of singularity spectrum    provides a measure of strength of multi-fractality. It is related 

to  ( ) via a Legendre transform, i.e.,   
  ( )

  
      ( )      ( ) (Steps for MFDFA are illustrated in case of 

tissue- index fluctuation in Figure 3). 

3. Multifractality of tissue 

Present point of concern is characterization of tissues. Several studies on this already have revealed that tissues 

exhibit self-similar behavior or fractality and several efforts were made to establish models to characterize tissue-

fractality based on different correlation functions. But all those previous understandings were within monofractal 

limits whereas it can be proved that tissues basically exhibit multifractality, that is, multi-scale self-similarity and 

monofractal approximations fail in case of tissue-characterization. The detailed strategy to prove tissue-

multifractality can be found in our recently published paper 
[4]

. Tissue-samples used in our experiments are 

histopathologically characterized biopsy tissue samples of human cervix having different grades of dysplasia 

(Grade-I, II and III), provided by G.S.V.M. Medical College and Hospital, Kanpur.  

 Analysis of tissue within monofractal approximation: Fourier domain analysis 

The methodology has been described in Section 2 with synthetic fractal images. Likewise, for this analysis, we 

record Differential Interference Contrast images of tissues and unfold the images in 1-D to obtain the refractive 

index fluctuation series and plot its Fourier spectrum. Being a statistically self-similar series, it should exhibit a 

power law ( ( )  ( )   ,   being the spatial frequency here in m
-1

) at the limit of large. In Figure 2, we show 

the results of the Fourier analysis on the spatial variation of refractive index from the connective tissue regions of 

typical dysplastic cervix. The DIC image and the corresponding Fourier power spectra of the generated one 

dimensional spatial index fluctuations are shown in two consecutive figures. The wide range of sizes and shapes of 

the inhomogeneities, their high packing densities and other factors all contribute to the complex nature of the  
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Fig.2 .DIC image of typical grade III dysplastic connective tissues and the corresponding Fourier power spectra of the 

generated one dimensional spatial index fluctuations are shown. The two different selected frequency ranges (lower and 

higher) exhibiting different power law scaling are shown by red and green colors respectively. The corresponding fits at 

lower 𝛽range (blue line), at higher 𝛽 range (red line) and the overall fit (black line) are shown. The values for the power law 

coefficients (slope -2𝛼) and the corresponding estimate for the average Hurst exponents H (for overall fitting) are noted.   
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resulting index variations. The power spectra are also associated with large background fluctuations indicating the 

overall randomness of the underlying index variations. The power spectra exhibit power law scaling beyond a 

certain spatial frequency range (for    0.075 m
-1

,
 
the spectral density appears linear on a log–log plot), which 

points towards the fractal nature of tissue-index fluctuation. But, unlike the case for a simple monofractal, the slopes 

are not the same throughout the entire spatial frequency range. The power law coefficients in different frequency 

ranges are different, -0.18 and -2.75; either of which are again different from the slope for the entire frequency range 

(= -1.40). Thus the Fourier domain analysis, i.e., the analysis within monofractal limit is not adequate to 

parameterize the fractality of tissue properly. It clearly indicates the multifractality of tissue, which can be 

confirmed from the multifractal analysis on this. 

 Analysis of tissue with multifractal analysis tool: MFDFA  

Failure of monofractal analysis procedure necessitates the application of multifractal analysis procedure. Thus we 

employ the sophisticated analysis tool MFDFA, which we discussed beforehand, on the one dimensional index 

fluctuation series. In Figure 3, the steps of MFDFA on unfolded refractive index fluctuation series extracted from 

the DIC image of a typical Grade-I dysplastic tissue are shown. 

 

Figure 3: With the 1-D fluctuation series obtained from a typical DIC image of a grade-I dysplastic tissue. The detrending 

procedure is shown in (a). Blue dotted line is the original data and the black lines are the fitted data. Detrended series is obtained 

by subtracting the fitted data from the original one. The q-th order fluctuation function Fq is plotted against length of data points 

in log-log scale (b), exhibiting different slopes for different orders of moment. Plots for Generalized Hurst exponent and Width of 

Singularity are shown in (c) and (d). 

It is shown clearly that the slope, i.e., the Hurst exponent h(q) values are changing significantly with order of 

moment q. It is a clear confirmation of multifractality in index fluctuation. Also the sigmoid nature of the 

Generalized Hurst exponent curve and the width of multifractality are in excellent agreement with this observation. 

Thus it is proved that tissues are multifractals and no monofractal-assumption based analysis procedure can be able 

to characterize it. It obviates the need of the alternative analysis strategy, i.e., the inverse analysis strategy that we 

already have discussed in Section 2. Also, it is seen that variation in slope is larger for negative q values than that for 
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positive q-values. Again, negative q amplifies small-scale fluctuations more. Thus the variation in result for different 

grades of dysplasia is expected mainly from the small-scale fluctuation regime. 

4. Experimental strategy: Light scattering based approach for quantification of tissue-multifractality 

Our ultimate goal is to look for a non-invasive methodology for quantitative detection of early cancer. Thus 

preparing tissue slides and taking microscopic images cannot be preferred.  Consequently we cannot move with DIC 

imaging. In this case, light scattering spectroscopic measurement can serve our purpose. In order to establish the 

light scattering based experimental strategy, we first validate our strategy through control experiments with synthetic 

mono-fractals and multifractals and then come to experiment with actual tissue. As described earlier, the scattering 

intensity can be measured from both wavelength and angular variation. Here, in the control experiment, the 

scattering intensity is recorded as the angular variation of scattering and in case of tissues, it is recorded as the 

wavelength variation of scattering. 

 

 Validation through control experiment 

 

Schematic diagram in Figure 4 presents the set-up for measurement of angular variation of scattering.  The Twisted 

Nematic Spatial Light Modulator (                                                               
                     ) is serving as the scattering object here. Processed fractal phase map (2-D images of 

monofractal FBM and Binary multifractal series, having different Hurst exponent values which are user controlled 

and known-a-priori) are relayed through the SLM, working in forward geometry. The angular distribution of the 

scattered light is obtained from the detected light intensity at individual pixels of EMCCD (Andor iXon3-885, 

number of pixels           , pixel area        ) along the horizontal direction (illustrated separately). 

         

     
Figure 4: A schematic of the experimental set-up for the measurement of angular variation of light scattering 

 Experiment with actual tissue: 

Similar procedure as above is applied on actual with actual tissues (slides prepared with unstrained tissue sections of 

thickness ~ 5m, lateral dimension ~ 4 mm  6 mm). The scattering intensity is recorded by the Fiber-optic 

spectrometer as the function of wavelength variation (400-700nm), as shown in the schematic Figure 5. We are 

specifically interested in backward scattering region since the small-scale fluctuations dominate in the backward 

scattering and also due to the ease of practical setup with patient. 
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   Figure 5: A schematic of the experimental set-up for the measurement of wavelength variation of light scattering 

5. Results and Discussions 

In control experiments with multifractal series, the Generalized Hurst exponent of the series extracted by inverse 

analysis from theoretical power spectrum and experimental light scattering signal for a multifractal series of input 

parameter a      are shown in the figure 6 which exhibits the agreement in the value of Hurst exponent estimated 

from both (only one result is shown here though we have dealt with different images of series having 0.5<a<1). 

Slight discrepancy observed may be due to limited size of the fractal series used since MFDFA gives accurate 

results for statistically large series only. However, in our case, the series was restricted by the pixel dimensions of 

the SLM (800 600). Never-the-less, good agreement is observed between the multifractality quantified via the 

inverse analysis of light scattering signal and the corresponding theoretical analysis of the input multifractal. This 

therefore validates our light scattering inverse analysis strategy for quantification of multifractality.  

We also have done the same analysis with synthetic monofractal FBM images with input Hurst exponent known-a-

priori (0.1<H<1.0). Those have been analyzed with the Fourier domain analysis method, using von-Karman 

correlation function based monofractal assumption. The results e shown in Table1 (results shown only for lower H-

values, for H>0.6 the FBM series generated by inbuilt MATLAB program is not a proper monofractal, some 

multifractality can also be found, so results could come inappropriate). 

Table 1: Results of the control experiment with monofractal (FBM) showing the similarity in values of Hurst exponent    

calculated from the log-log plot analysis of theoretical power spectrum and experimental light scattering data 

Input 

Hurst 

exponent 

Slope of theoretical 

power spectrum log-log 

plot= -(2H+1) 

H from 

theoretical power 

spectrum 

Slope of experimental 

light scattering data, 

log-log plot=-(2H+2) 

H from 

experimental light 

scattering data 

0.1 -1.12 0.06 -2.18 0.09 

0.2 -1.25 0.12 -2.28 0.14 

0.3 - 1.40 0.20 -2.48 0.24 

0.4 -2.02 0.51 -2.87 0.44 

0.5 -1.96 0.48 -2.95 0.48 

0.6 -2.13 0.56 -3.14 0.57 
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                   (a)                                                              (b)                                                             (c) 

                                            

                                                                                    (d) 

 

 

Thus, for both monofractal and multifractal, theoretical and experimental values of fractal-parameter are in proper 

agreement which, in turn, validates our experimental strategy. 

Now we apply this strategy on actual tissues. The results obtained from the Inverse analysis of light scattering 

spectra from tissues show a clear deviation in Hurst exponent and increase in width of multifractality for higher 

grades of pre-cancer. Table-2 gives the comparative study on 29 tissue-samples having different grades of pre-

cancer.  

 

Table 2. Summary of the MFDFA analysis on the spatial refractive index fluctuations in DIC images connective 

tissue regions of the human cervix specimens with different grades of precancers (dysplasia).   

 

Clear trend is apparent for higher grades of pre-cancer. Decrease in Hurst exponent for higher grades of precancer 

indicates the anti-persistent behavior of index fluctuations within the tissue which may originate due to the fact the 

fibrous network present in connective tissue region gets disturbed in diseased condition, fibers tend to get shortened 

and correlation breaks. Increase in width of singularity spectrum also indicates the increasing roughness due to 

increase in disease in sub-cellular level.  

 

Tissue region Generalized Hurst exponent h (q =2) Width of singularity spectra    

 Grade I                   Grade II Grade III Grade I          Grade II Grade III 
Connective tissue 0.54  0.03               0.50  0.04 0.36  0.08 0.60  0.10   0.68  0.13 0.88  0.07 

Figure 6: 2-D image of binomial multifractal is processed (a). Its theoretical power spectrum (b)is analyzed and 

experimental scattering signal (c) is recorded. The fluctuation series is obtained by inverse analysis. MFDFA on those 

series give the Generalized Hurst exponent plot, h(q=2) =H (d). 
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The initial application of our experimental strategy underscores its promises to be employed as a non-invasive tool 

for detection as well as quantification of pre-cancer.  We are able to prove our technique accurate through control 

experiments and to explain the results we observed from application of the strategy on tissues reasonably. The 

successful application of the methodology, thus, states its relevance and significance in terms of quantitative 

measurement of pre-cancer.  
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